RISC-V Reference Model Integration
Version 1.0 | Developed by Impare

1. Purpose

This document provides a step-by-step guide for integrating the Impare RISC-V
Reference Model into any UVM-based verification environment. It describes the directory
structure, configuration setup, and how the reference model interacts with the DUT

through the scoreboard.

2. Block Diagram

The following diagram illustrates how the Impare RISCV Model (IRVM) integrates into a

UVM testbench environment:

Scoreboard

‘;[Impare IRVM H Compare }1

Instruction

Sequence Inst Agent

TB Top

Test
Verif ENV

RISCV DUT

Monitor

2. Compilation Setup

As you have extracted main IP folder,

Page 14 of 22

IRVM

1. Open the folder

ar Home RISCV_SB RISCV_20_10_35 =

hex_file sim

2. Inside it, locate and open the sim folder. This folder contains the Makefile that

controls the simulation process.

ar Home RISCV_SB RISCV_20_10_25 sim -

Makefile

Open the Terminal

1. Right-click anywhere inside the sim folder.

compile.log esre Makefile simulate.log

tr_db.log ucli.key ve_hdrs.h

2. From the menu, select “Open in Terminal/console.”

simv

Page 15 of 22

simv.daidir

MNew Folder
Add to Bookmarks

Copy Location

Select All
Openin Terminal

Properties

A terminal window will open in the correct directory.

File Edit View S5earch Terminal Help

[hamza@localhost sim]$

The Makefile and compile.f are already configured to handle compilation and simulation.
Use the following commands to build and run simulations:

make all # Compile and run simulation
make compile # Compile only
make run # Run simulation

Compile the Simulation Environment

In the terminal, type:

make compile

This command compiles the simulation environment. During compilation, the Makefile
executes the following rule:

Page 16 of 22

Starting vcs inline pass...
4 modules and © UDP read.

However, due to incremental compilation, no re-compilation is necessary.
make[1l]: Entering directory " /home/hamza/Videos/RV CPU Model-main/RISCV VERIF/si
m/csrc'

-f cuarc*.so csrc*.so pre vcsobj *.so share vcsobj *.so
-X ../simv]; then chmod a-x ../simv; fi

.. /simv -1ssl -lcrypto -lcurl -rdynamic -WLl,-rpath='$0ORIGIN'/simv.
-Wl,-rpath=./simv.daidir -Wl,-rpath=/opt/synopsys/vcs/W-2024.09-SP1/1linux
-L/opt/synopsys/vcs/W-2024.09-SP1/1linux64/1ib -W1l,-rpath-link=./ /usr/1

ib64/1libnuma.so.1 objs/amcQw d.o 4773 archive 1.so prev archive 1l.so SIM
l.0 rmapats mop.o rmapats.o rmar.o rmar nd.o rmar llvm © 1.0 rmar llvm ©

0.0 -lvirsim -lerrorinf -lsnpsmalloc -1lvfs libsclic.so -lvcsnew -1
simprofile -luclinative /opt/synopsys/vcs/W-2024.09-SP1/1linux64/1ib/vcs tls.o

What the Makefile Does

The Makefile automates compilation and simulation.
When you type make comp or make run, it executes specific targets (scripts) defined
inside the file — so you don’t have to write the long VCS commands yourself every time.

make comp — Compilation Stage

When you run:

make compile

The Makefile executes:

compile:
@echo "Compiling UVM environment..."
${VCS} -f ${RISCV_HOMEY}/tb/compile.f -| compile.log -0 simv \
-CFLAGS "${CFLAGS_COMMON} ${CFLAGS_LIBS}"\
-LDFLAGS "${LDFLAGS LIBS}"

Here’s what each part does:

Flag Purpose

Specifies the list of all SystemVerilog source files to compile

-f ${COMPILE_FILE} (from compile.f).

Links the shared C library (libsclic.so) used for DPI

-sv_lib ${SV_LIB} communication.

Page 17 of 22

Flag Purpose

Adds compiler include paths or definitions for OpenSSL and

-CFLAGS cURL header files.

Adds linker flags to connect with the OpenSSL (libssl, libcrypto)

-LDFLAGS and cURL libraries.

Automatic Path Variable Setup

Before running make comp, the Makefile automatically checks whether your system has
pkg-config.

This helps it auto-detect include and link paths for OpenSSL and cURL.:

ifeq ($(PKGCONFIG_EXISTS),1)
Use pkg-config if available
CFLAGS_LIBS := $(shell pkg-config --cflags openssl libcurl 2>/dev/null)
LDFLAGS LIBS := $(shell pkg-config --libs openssl libcurl 2>/dev/null)
else
$(warning !! pkg-config not found. Falling back to default flags.)

CFLAGS_LIBS :=
LDFLAGS_LIBS := -Issl -lcrypto -Icurl
endif

So depending on your environment:
o If pkg-config is available — it uses exact paths for OpenSSL and libcurl.

e If not — it falls back to the default -Issl -Icrypto -Icurl.

make run — Simulation Stage

When you run:

make run

The Makefile executes:

Page 18 of 22

run:
@echo "Running simulation with HEX file: ${HEX_FILE}"
export SVLIC_KEY=$(KEY) &&\
${SIMV} -sv_lib ${SV_LIB} +UVM_TESTNAME=${TEST} \
+HEX=${HEX_FILE} +UVM_VERBOSITY=UVM_LOW -I simulate.log

$finish called from file "/home/hamza/Videos/RV CPU Model-main/RISCV CPU UPDATED/riscv factory.svp", line 19.
$finish at simulation time)

vCs Simulation Report
Time: © ns
CPU Time: 0.340 seconds; Data structure size: 0.1Mb
Tue Oct 14 15:06:43 2025

What this does:

1. Exports your license key to the simulator environment (SVLIC_KEY).
2. Runs the compiled simulation binary (simv).
3. Logs all console output to simulate.log.

4. Loads the program instructions from your .hex file.

In Short

Command Purpose

make Compiles all SystemVerilog and C files using VCS with proper OpenSSL
comp and cURL linkage.

Executes the simulation using your compiled binary, license key, and hex
program.

make run

Inside the hex_file folder you will find the file named “prog.hex”

Place your prog.hex inside the hex_file folder

sim sre tb

Page 19 of 22

prog.hex

HEX DIR := $(RISCV_HOME)/hex_file
HEX_FILE ?= $(HEX_DIR)/prog.hex

The HEX_ FILE variable specifies the path to the instruction file (prog.hex) which has
special folder, that will be loaded into the model.

prog.hex is the file that will contain instructions to be run on the model.

You convert the instructions to be run into hex format where each instruction is 32 bytes
Assembly:

add x1, x2, x3

Machine code (hex):

003100B3

Then distribute one byte or 2 hex characters per line.

Make sure your hex file (e.g., prog.hex) is placed inside the hex_file folder.

You're all set! Once you complete these steps, the simulation will begin using your
provided instruction file.

Page 20 of 22

$finish called from file "/home/hamza/Videos/RV CPU Model-main/RISCV CPU UPDATED/riscv_ factory.svp", line 19.
$finish at simulation time 2]

vCs Simulation Report
Time: © ns
CPU Time: 0.340 seconds; Data structure size: 0.1Mb
Tue Oct 14 15:06:43 2025

4. Packages Overview

Package Description

riscv_pkg.sv Defines instruction formats, registers,
enums, and static results.

riscv_class_pkg.sv Includes instruction decode and factory
classes.
risc_uvm_pkg.sv Contains UVM agent, driver, monitor, and

transaction classes.

risc_env_pkg.sv Defines environment and scoreboard
components.

risc_seq_pkg.sv Defines UVM sequences for stimulus
generation.

risc_test pkg.sv Contains the top-level test definition.

5. Integration Steps
Step 1 — Include Packages in compile.f

${RISCV_HOME}/src/riscv_model/riscv_pkg.sv
${RISCV_HOME}/src/riscv_model/riscv_class_pkg.sv

Step 2 — Instantiate the Scoreboard in the Environment

Create and connect the scoreboard inside the UVM environment class, linking it with the
agent’s monitor.

Step 3 — Pass HEX file using uvm_config_db
Inside the test class, use:

if ('$value$plusargs("HEX=%s", hex_fname)) begin
hex_fname ="../hex_file/prog.hex";

Page 21 of 22

‘uvm_info("BASE_TEST", $sformatf("No +HEX provided; using default: %s",
hex_fname), UVM_LOW)
end

| uvm_config_db#(string)::set(this, "*", "hex_fname", hex_fname); |

6. Reference Model Flow

1. The reference model fetches and decodes each instruction from the provided HEX
file.

2. Executes instruction behaviorally using decode classes.

3. Updates architectural state (PC, result, result_fd).

4. Scoreboard fetches model outputs and compares them with DUT outputs.

7. Key Functions in Reference Model

get_pc() — Returns the current program counter.
get_result() — Returns last integer result.
get_result_fd() — Returns floating-point result.

run() — Executes fetch and decode for one instruction.
program_done — Indicates program completion.

8. Summary Checklist

v riscv_pkg and riscv_class_pkg included before UVM packages.
v +HEX parameter passed during simulation.

v Config DB used for filename transfer.

v Monitor connected to scoreboard.

v Scoreboard instantiates riscv_factory.

v Reference model runs parallel to DUT.

Page 22 of 22

