
Page 14 of 22

RISC-V Reference Model Integration
Version 1.0 | Developed by Impare

1. Purpose

This document provides a step-by-step guide for integrating the Impare RISC-V

Reference Model into any UVM-based verification environment. It describes the directory

structure, configuration setup, and how the reference model interacts with the DUT

through the scoreboard.

2. Block Diagram

The following diagram illustrates how the Impare RISCV Model (IRVM) integrates into a

UVM testbench environment:

2. Compilation Setup

As you have extracted main IP folder,

Page 15 of 22

1. Open the folder

2. Inside it, locate and open the sim folder. This folder contains the Makefile that

controls the simulation process.

Open the Terminal

1. Right-click anywhere inside the sim folder.

2. From the menu, select “Open in Terminal/console.”

Page 16 of 22

A terminal window will open in the correct directory.

The Makefile and compile.f are already configured to handle compilation and simulation.

Use the following commands to build and run simulations:

make all # Compile and run simulation

make compile # Compile only

make run # Run simulation

Compile the Simulation Environment

In the terminal, type:

make compile

This command compiles the simulation environment. During compilation, the Makefile

executes the following rule:

Page 17 of 22

What the Makefile Does

The Makefile automates compilation and simulation.

When you type make comp or make run, it executes specific targets (scripts) defined

inside the file — so you don’t have to write the long VCS commands yourself every time.

make comp — Compilation Stage

When you run:

make compile

The Makefile executes:

compile:
 @echo "Compiling UVM environment..."
 ${VCS} -f ${RISCV_HOME}/tb/compile.f -l compile.log -o simv \
 -CFLAGS "${CFLAGS_COMMON} ${CFLAGS_LIBS}" \
 -LDFLAGS "${LDFLAGS_LIBS}"

Here’s what each part does:

Flag Purpose

-f ${COMPILE_FILE}
Specifies the list of all SystemVerilog source files to compile

(from compile.f).

-sv_lib ${SV_LIB}
Links the shared C library (libsclic.so) used for DPI

communication.

Page 18 of 22

Flag Purpose

-CFLAGS
Adds compiler include paths or definitions for OpenSSL and

cURL header files.

-LDFLAGS
Adds linker flags to connect with the OpenSSL (libssl, libcrypto)

and cURL libraries.

Automatic Path Variable Setup

Before running make comp, the Makefile automatically checks whether your system has

pkg-config.

This helps it auto-detect include and link paths for OpenSSL and cURL:

ifeq ($(PKGCONFIG_EXISTS),1)

 # Use pkg-config if available

 CFLAGS_LIBS := $(shell pkg-config --cflags openssl libcurl 2>/dev/null)

 LDFLAGS_LIBS := $(shell pkg-config --libs openssl libcurl 2>/dev/null)

else

 $(warning !! pkg-config not found. Falling back to default flags.)

 CFLAGS_LIBS :=

 LDFLAGS_LIBS := -lssl -lcrypto -lcurl

endif

So depending on your environment:

• If pkg-config is available → it uses exact paths for OpenSSL and libcurl.

• If not → it falls back to the default -lssl -lcrypto -lcurl.

make run — Simulation Stage

When you run:

make run

The Makefile executes:

Page 19 of 22

run:
 @echo "Running simulation with HEX file: ${HEX_FILE}"
 export SVLIC_KEY=$(KEY) &&\
 ${SIMV} -sv_lib ${SV_LIB} +UVM_TESTNAME=${TEST} \
 +HEX=${HEX_FILE} +UVM_VERBOSITY=UVM_LOW -l simulate.log

What this does:

1. Exports your license key to the simulator environment (SVLIC_KEY).

2. Runs the compiled simulation binary (simv).

3. Logs all console output to simulate.log.

4. Loads the program instructions from your .hex file.

In Short

Command Purpose

make

comp

Compiles all SystemVerilog and C files using VCS with proper OpenSSL

and cURL linkage.

make run
Executes the simulation using your compiled binary, license key, and hex

program.

Inside the hex_file folder you will find the file named “prog.hex”

Place your prog.hex inside the hex_file folder

Page 20 of 22

HEX_DIR := $(RISCV_HOME)/hex_file
HEX_FILE ?= $(HEX_DIR)/prog.hex

The HEX_FILE variable specifies the path to the instruction file (prog.hex) which has

special folder, that will be loaded into the model.

prog.hex is the file that will contain instructions to be run on the model.

You convert the instructions to be run into hex format where each instruction is 32 bytes

Assembly:

add x1, x2, x3

Machine code (hex):

003100B3

Then distribute one byte or 2 hex characters per line.

Make sure your hex file (e.g., prog.hex) is placed inside the hex_file folder.

You’re all set! Once you complete these steps, the simulation will begin using your

provided instruction file.

Page 21 of 22

4. Packages Overview

Package Description

riscv_pkg.sv Defines instruction formats, registers,

enums, and static results.

riscv_class_pkg.sv Includes instruction decode and factory

classes.

risc_uvm_pkg.sv Contains UVM agent, driver, monitor, and

transaction classes.

risc_env_pkg.sv Defines environment and scoreboard

components.

risc_seq_pkg.sv Defines UVM sequences for stimulus

generation.

risc_test_pkg.sv Contains the top-level test definition.

5. Integration Steps

Step 1 – Include Packages in compile.f

${RISCV_HOME}/src/riscv_model/riscv_pkg.sv

${RISCV_HOME}/src/riscv_model/riscv_class_pkg.sv

Step 2 – Instantiate the Scoreboard in the Environment

Create and connect the scoreboard inside the UVM environment class, linking it with the

agent’s monitor.

Step 3 – Pass HEX file using uvm_config_db

Inside the test class, use:

 if (!$value$plusargs("HEX=%s", hex_fname)) begin
 hex_fname = "../hex_file/prog.hex";

Page 22 of 22

 `uvm_info("BASE_TEST", $sformatf("No +HEX provided; using default: %s",
hex_fname), UVM_LOW)
 end

uvm_config_db#(string)::set(this, "*", "hex_fname", hex_fname);

6. Reference Model Flow

1. The reference model fetches and decodes each instruction from the provided HEX

file.

2. Executes instruction behaviorally using decode classes.

3. Updates architectural state (PC, result, result_fd).

4. Scoreboard fetches model outputs and compares them with DUT outputs.

7. Key Functions in Reference Model

get_pc() – Returns the current program counter.

get_result() – Returns last integer result.

get_result_fd() – Returns floating-point result.

run() – Executes fetch and decode for one instruction.

program_done – Indicates program completion.

8. Summary Checklist

✔ riscv_pkg and riscv_class_pkg included before UVM packages.

✔ +HEX parameter passed during simulation.

✔ Config DB used for filename transfer.

✔ Monitor connected to scoreboard.

✔ Scoreboard instantiates riscv_factory.

✔ Reference model runs parallel to DUT.

